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The use of memory kernels stemming from a Mori-Zwanzig approach to time series analysis is discussed.
We show that despite its success in determining properties from an analytical model, the kernel itself is not
easily interpreted. We consider a recently introduced discretization of the kernel and show that its properties
can be quite different from its continuous counterpart. We provide a rigorous analysis of the discrete case and
show for several analytically calculated memory kernels of simple time series processes that their features are
not readily detectable in the kernel. We show furthermore that practical relevant Mori-Zwanzig models with a
finite kernel form a true subclass of the autoregressive moving average �ARMA� models. The fact that this
approach already veils the properties of these simple time series gives rise to severe doubts about its applica-
bility in more complex situations.
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I. INTRODUCTION

In the early years of the analysis of strongly and irregu-
larly fluctuating time series data, linear stochastic models
were used for their modeling and prediction �1�. When in the
1980s the phenomenon of deterministic chaos became more
and more popular, the interpretation of strong fluctuations in
terms of deterministic processes occurred as a charming al-
ternative, resulting in a set of corresponding time series
methods �2�. However, it soon became evident that purely
deterministic and low-dimensional chaotic processes are usu-
ally not good candidates for processes in nature. Therefore,
the inclusion of stochasticity into such nonlinear models was
taken into account, resulting in time series methods to recon-
struct Fokker-Planck equations from data �3�. Apart from
some more technical restrictions, also such models are not
able to explain long-range correlations and memory in data.
Exactly this was reported in a huge number of more recent
publications, such as in climate records �4�, physiological
data �5�, economic data �6�, and geophysical processes �7�.
The method to detect such memory effects, the �detrended�
fluctuation analysis, does not give any hint at the modeling
of such data.

In this situation, the recently proposed modeling of time
series data in terms of Mori-Zwanzig equations �8� appeared
very promising. In the time-discrete Mori-Zwanzig ap-
proach, the time series model is a linear stochastic model in
the spirit of an autoregressive AR��� model with correlated
noises, where the AR coefficients, however, are interpreted
as the values of a �linear� memory kernel. Hence, this model
class seemed to be an appealing class to model infinite
memory and hence non-Markovian behavior. In the same
paper, a numerical procedure for the computation of the
memory kernel from data was proposed.

In this contribution, we start by looking at the memory
kernel of simple time-continuous processes and show that
already the time-continuous memory kernel displays features

which are hard to connect directly to the underlying physical
process. Then, we review the above method and supply a
comprehensive understanding of the memory kernel thus ob-
tained and of the correlation of the produced residual forces,
which are the correlated noise terms. We compute the kernels
for several simple linear stochastic processes and for the pro-
cess we considered in the continuous case sampled in dis-
crete time steps. As results, we find that the discrete kernel
can deviate substantially from the continuous counterpart
and that simple processes generate kernels which are as long
range and complicated as for other, genuinely non-Mark-
ovian processes. The memory kernels thus computed neither
possess any straightforward interpretations in terms of the
properties of the underlying processes nor reflect their com-
plexity. Thus we have to draw the conclusion that this very
compelling idea of modeling observed data by Mori-Zwan-
zig-like equations does not yield direct insight into the pro-
cesses which generated the data.

In addition we show that the kernels with finite length
which are interesting for data modeling result in a class of
models which form a true subclass of antoregressive moving
average �ARMA� models. Therefore, we conclude that this
approach is not useful for data generation.

II. CONTINUOUS MORI-ZWANZIG KERNEL

The Mori-Zwanzig method �9–11� provides a projection
formalism which is an exact equation for the time evolution
of a set of “relevant” observables by putting the evolution of
the neglected variables into a time kernel and residual terms.
Its continuous-time version can be written for a set of ob-
servables G��t� as ��12�, Eq. �11.2.14��

Ġ��t� = �
�

���G��t� − �
0

t

�
�

K���t��G��t − t��dt� + F��t� .

�1�

This splitting is done with respect to a scalar product on the
space of observables which is invariant with respect to time
translation. In general, this scalar product is constructed by*niemann@mpipks-dresden.mpg.de
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choosing an invariant probability measure � on the phase
space �13�:

�f ,g� = �fg�� =� f�x�g�x�d��x� , �2�

which corresponds to an ensemble of initial conditions.
The noise terms F��t� are constructed in such a way that
they stay orthogonal to the initial set of observables
G0�ªG��t=0� at all times:

�F��t�G0�� = 0. �3�

Projecting on the initial set of observables, one gets rid of the
“noise” terms:

d

dt
�G��t�G0�� = �

�

����G��t�G0��

− �
0

t

�
�

K���t���G��t − t��G0��dt�, �4�

�̇���t� = �
�

�������t� − �
0

t

�
�

K���t������t − t��dt�, �5�

with ����t�ª �G��t�G0��. Taking the Laplace transform, this
equation reads �using matrix notation�

s�̌�s� − ��0� = �� − Ǩ�s�� ��s� , �6�

with

�̌�s� = �
0

�

e−st��t�dt �7�

and

Ǩ�s� = �
0

�

e−stK�t�dt �8�

being the Laplace transforms of ��t� and K�t�. Using the fact
that lims→� K�s�=0, Eq. �6� can be used to determine the
kernel and � from a known correlation structure. Of course,
the typical use of the Mori-Zwanzig formalism is to approxi-
mate the kernel for a given analytical model and to deduce
the correlation structure or transport coefficients from it. But
here we want to check if we can readily detect the properties
of the system by looking solely at the kernel.

As a basis of the next two examples we will use the clas-
sical harmonic oscillator with the Hamilton function

H�q,p� =
1

2
q2 +

1

2
p2. �9�

Invariant measures are given by �13�

d��q,p� = Z„H�q,p�…dqdp , �10�

which contain as a special case the Boltzmann distribution

d�B�q,p� =
�

2	
exp	−

�

2
�q2 + p2�
dqdp . �11�

Example �A�: taking the observable G0=q0. The time evo-
lution is given by G�t�=q�t�=q0 cos t− p0 sin t which gives

��t� = �q0
2�cos t . �12�

Using Eq. �6� results in

� = 0 �13�

and

K�t� = 1. �14�

The nondecaying �infinite memory� kernel corresponds to the
fact that the original second-order time derivative is replaced
by a first-order derivative and an integration. The frequency
of the oscillation does not enter through a periodicity of the
kernel, but only as the scaling. We will come back to this
example in the context of discrete sampling.

Example �B�: taking the observable G0=q0
3. This corre-

sponds to the case of an observable where considering non-
linear transformations would be beneficial to the analysis.
The Mori-Zwanzig formalism projects then the time evolu-
tion on the subspace spanned by q0

3 which is equivalent to
choosing one prefactor such that q3�t� is best �least mean
square� approximated on the whole ensemble under consid-
eration. The correlation function is

��t� = �q0
6�cos3 t + 3�q0

4p0
2�cos t sin2 t . �15�

Using Eq. �6� again gives

� = 0 �16�

and

K�t� =
9

7 + 6

−

12�
 + 1��3
 − 1�
7 + 6


cos��7 + 6
t� , �17�

with 
ª �q0
4p0

2� / �q0
6�. In the case of a Boltzmann ensemble

�
=1 /5�, the kernel reduces to

K�t� =
45

41
+

144

205
cos	�41

5
t
 . �18�

Due to the high symmetry of the Hamilton function, it is
possible to show that every distribution of the form described
in Eq. �10� gives these numerical values. This kernel shows
also infinite memory, but we see also an angular frequency of
�41 /5 which has no direct relation to the angular frequency
1 of the oscillator.

We see that it is hard to detect properties of the system
directly from the kernel without processing it further. This
observation will carry over to the discrete system.

III. DISCRETE MORI-ZWANZIG KERNEL

In �8� a discretized version of the Mori-Zwanzig equation
is introduced and a method to determine the kernel elements
from a time series is proposed. The space of relevant vari-
ables is taken to be the linear span of the measured ob-
servables. In the case of a multidimensional time series
�X��t��t=0,1,2,. . . the equation for t�0 reads
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X��t + 1� = − �
�=0

t

�



K�
�t − ��X
��� + F��t� , �19�

where the X��t� are assumed to have zero mean. To simplify
the equations given in �8� we made two changes: we as-
sumed that the starting point of the time series is at 0 and the
average is taken over an ensemble of processes, indepen-
dently of whether this ensemble results from moving the
origin over one realization of the process or considering dif-
ferent realizations of the process. Second, we subsumed the
terms belonging to the current time �this is the oscillation
term � and the difference term in �8�� into K�0� since they
lose their special meaning in the time-discrete case. These
changes affect only the value of K�0� and do not change any
other results.

The F��t� terms describe again the fluctuations due to the
complementary dynamics. They have the property
�X��0�F�����=0 for all times ��0. This is used in �8� to
determine the conditional equations for the kernel:

����t + 1� = − �
�=0

t

�



K�
�t − ���
���� for t � 0, �20�

with ����t�ª �X��t�X��0��. Equations �19� and �20� in ma-
trix notation are

X�t + 1� + �
�=0

t

K�t − �� X��� = F�t� �21�

and

��t + 1� + �
�=0

t

K�t − �� ���� = 0 for t � 1. �22�

From a time series analysis point of view Eqs. �21� and �22�
form a linear model. We want to analyze them from this side
and link them to the standard linear models.

Similarly to the continuous case one can use the unilateral
z transform ��14�, Chap. 3�—the discrete analog of the �uni-
lateral� Laplace transform. The z transforms of the above
series are defined as

X̂�z� ª �
j=0

�

z−jX�j� �23�

and

F̂�z� ª �
j=0

�

z−jF�j� �24�

for z� �z�C : z1�

�̂�z� ª �
j=0

�

z−j��j� �25�

and

K̂�z� ª �
j=0

�

z−jK�j� �26�

for z� �z�C : z�� with some 0���1. The ranges of
convergence stem from the fact that the given series are
stable and causal. In this paper we will not rely on this in-
terpretation; the z transform can be rather seen as a formal
power series in z−1 and regarded as a convenient tool for the
bookkeeping of coefficients. Equations �21� and �22� can
hence be written as

�1 + z−1K̂�z�� X̂�z� = X�0� + z−1F̂�z� �27�

and

�1 + z−1K̂�z�� �̂�z� = ��0� . �28�

The first of these formulas contains on the right-hand side
the part which would be considered as random in a model
simulation �the initial condition and the “noise” terms�. The

extension of K̂�z� by the unit matrix �and therefore the ap-
pearance of X�0� as a constant term on the right-hand side� in
this form stems from the orthogonality condition between
X�0� and the noise terms: �X��0�F�����=0.

Equation �28� shows that the autocovariance function
contains exactly the same information as the kernel together
with the covariance matrix. In the one-dimensional case the
process of calculating the kernel components from the auto-
covariance function is �apart from a scaling factor� the same
as the transformation of the coefficients of an �possibly infi-
nite� AR model into the coefficients of a �possibly infinite�
MA model and vice versa. It also shows that the kernel can
be calculated by expanding

1 + z−1K̂�z� = ��0� �̂−1�z� �29�

as a power series in z−1 and reading off the coefficients.
Example �C�: first-order autoregressive process �AR�1�

process�. An AR�1� process is defined by

x�t� = ax�t − 1� + ��t� with − 1 � a � 1, �30�

where ��t� are independent and identically distributed �i.i.d.�
normal random variables with mean 0 and variance 1. The
autocovariance function of lag � is ��1�, Chap. 3.2.3� 
�

=a� / �1−a2�. Therefore, we get

�̂�z� =
1

1 − a2�
j=0

�

z−jaj =
1

1 − a2

1

1 − z−1a
�31�

and

1 + z−1K̂�z� = 1 − z−1a . �32�

We can read off the kernel elements K�0�=−a and K�j�=0
for j�1. This result coincides with the numerical findings in
�8� since an Ornstein-Uhlenbeck process sampled at equidis-
tant discrete time steps is an AR�1� process. Additionally, we
implemented the numerical algorithm given in �8� �which
essentially estimates the autocovariance function from the
time series and calculates the kernel iteratively using Eq.
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�20��. Figure 1 displays the kernel K�j� obtained numerically
for a variety of AR�1� processes. Each series consisted of 106

points and was generated with a different parameter a. It can
be seen that the numerical results are in perfect agreement
with the analytical solution.

Example �D�: second-order autoregressive process
�AR�2�� with pseudoperiodic behavior. It is defined by

x�t� = �1x�t − 1� + �2x�t − 2� + ��t�

= 2D cos���x�t − 1� − D2x�t − 2� + ��t� , �33�

with −1�D�1, where the ��t� have the same properties as
in the last paragraph and �1=2D cos���, �2=D2 with � be-
ing the frequency of the oscillation and D the damping con-
stant. The autocovariance function of lag � is given by ��1�,
Chap. 3.2.4�


� = 
0
D� sin��� + F�

sin�F�
, �34�

with

tan�F� =
1 + D2

1 − D2 tan��� . �35�

Writing the sine as a sum of exponentials and evaluating the
geometric series gives

�̂�z� = 
0�
j=0

�
Dj sin��j + F�

sin�F�
z−j = 
0

1 −
2D3

1 + D2 cos���z−1

1 − 2D cos���z−1 + D2z−2

�36�

and

1 + z−1K̂�z�

= �1 − 2D cos���z−1 + D2z−2��
j=0

� 	 2D3

1 + D2 cos���
 j

z−j

= 1 −
2D cos���

1 + D2 z−1 + 	 1 + D2

2D cos���
−

2D cos���
1 + D2 
z−1

��
j=1

� 	 2D3

1 + D2 cos���
 j

z−j . �37�

The kernel elements are therefore

K�0� = −
2D cos���

1 + D2 ,

K�j� = 	 1 + D2

2D cos���
−

2D cos���
1 + D2 
	 2D3

1 + D2 cos���
 j

for j � 1. �38�

The oscillatory behavior with frequency � has no counter-
part in the kernel and the damping constant of the kernel
2D3 cos��� / �1+D2� has no obvious physical interpretation, a
phenomenon already encountered in the continuous case.

Figure 2 shows both the numerically obtained kernels and
the analytical solutions: a variety of AR�2� processes �each
with 106 points� was generated and the corresponding ker-
nels were computed according to the algorithm given in �8�.
The numerical results were again in perfect agreement with
the analytical solution.

Example �E�: the harmonic oscillator, introduced in the
last section �Eq. �9��, sampled at discrete time steps tj =�j
with � being the sampling interval. If we assume that 1 /� is
not rationally conjugated with the angular frequency �which
is 1 in our example�, the correlation function estimated from
a time series will converge to the correlation function evalu-
ated over the initial conditions of a microcanonical ensemble
of the given energy; i.e., we will get using Eq. �12�
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FIG. 1. Kernel K�i� for four different AR�1� processes: a
� �−0.9,−0.5,0.5,0.9�. The numerical results are plotted with dia-
monds. The analytical solutions K�0�=−a and K�i�=0 for i�1 are
drawn with dotted lines for better visibility. The dot-dashed line
corresponds to K�0�=−a.
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NIEMANN et al. PHYSICAL REVIEW E 77, 011117 �2008�

011117-4



��k� = �q0
2�cos��k� . �39�

This generalizes to a set of time series representing an arbi-
trary ensemble corresponding to an energy distribution. Cal-
culating the z transforms

�̂�z� = �q0
2�

1 − z−1 cos �

1 − 2z−1 cos � + z−2 �40�

and using Eq. �28�

K̂�z� = − cos � + sin2 ��
j=1

�

z−j cosj−1 � �41�

gives the kernel elements

K�0� = − cos � , K�j� = sin2 � cosj−1 � . �42�

This kernel looks similar to the kernel of an AR�2� process
�in fact, the kernels coincide for D→1�. It decays exponen-
tially with a time constant �−ln cos �� /� in contrast to the
constant kernel in the continuous case. In particular, the time
constant of the decay only depends on the sampling fre-
quency and therefore does not reflect a property of the un-
derlying process �e.g., �−ln cos �� /��� /2 for ��1�. This
example shows that discretization can totally change the ker-
nel which makes the interpretation even harder. Similarly to
the continuous case the oscillating behavior of the original
process is not directly visible in the kernel.

Example �F�: the damped harmonic oscillator with sto-
chastic driving and discrete sampling. We consider the
damped harmonic oscillator with stochastic driving in con-
tinuous time

d2x

dt2 �t� + g
dx

dt
�t� + �2x�t� = ��t� , �43�

which we assume to be in the oscillatory regime �2�g
0� and ��t� constitutes white noise in continuous time
���t���s��=q��t−s�. The causal Green’s function is given by

G�t� =
1

�
��t�e−�t sin��t� , �44�

with �=g /2, �=��2−�2, and ��t� being the Heaviside step
function. The solution to Eq. �43� can therefore be written as

x�t� = �
−�

�

G�t − t����t��dt�. �45�

Combining this with ���t���s��=q��t−s� enables us to deter-
mine the autocovariance function


�t − s� = �x�t�x�s��

= 
�0�e−�t−s	cos��t − s� +
�

�
sin��t − s�
 .

�46�

Similar to the previous example, we introduce the time dis-
cretization with time step � and get for the z transform of the
autocovariance function in discrete time

�̂�z� = 
�0�
1 − �cos���� −

�

�
�e−��z−1

1 − 2 cos����e−��z−1 + e−2��z−2 . �47�

Following now the analog calculation in example �D� we get
for the kernel elements

K�0� = − 	cos���� +
�

�
sin����
e−��,

K�j� = �1 + 	 �

�

2�sin2����	cos���� −

�

�
sin����
 j−2

e−��j .

�48�

For high sampling rates ���� ,�� we get for the time con-
stant of the decay

−
1

�
ln�	cos���� −

�

�
sin����
e−���

= 2� +
�2 + �2

2
� + O��2� , �49�

while the scaling of the kernel is

�1 + 	 �

�

2� sin2����

�cos���� −
�

�
sin�����2

= �1 + 	 �

�

2�����2 + O��3� . �50�

While we get the correct damping constant g=2� in zeroth
order with a first-order correction �keeping in mind that one
has to take the second order into account to see the kernel�,
the oscillatory behavior is not directly visible in the kernel
and its frequency can only be determined by the properties of
the kernel �e.g., the scaling� which are strongly sampling rate
dependent.

IV. CORRELATIONS OF THE NOISE TERMS

In the time-continuous case, the memory kernel can also
be found in the correlations of the noise terms ��12� Eq.
�11.2.24��:

K���t� = �



g�
�F
�0�F��t�� , �51�

with g�� being the inverse of the covariance matrix:
�
g�
�X
X��=��� �see �12� Eq. �11.2.3��. We want to derive
the corresponding equation for the time-discrete case. It will
turn out to be useful to look at a two-dimensional generali-
zation of the z transform containing all correlations of the
noise terms at arbitrary times:

ĉ�z1,z2� ª �F̂�z1�F̂�z2�T� = �
i,j=0

�

c�i, j�z1
−iz2

−j , �52�

with c�i , j�ª �F�i�F�j�T� being the covariance matrix be-
tween the noise terms at time steps i and j. Since we assume
X�i� to be stationary, we get
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�X̂�z1�X̂�z2�T� = 	�
i=0

�

�z1z2�−i
��̂�z1� + �̂�z2�T − ��0�� .

�53�

Combining this with Eqs. �27� and �28� gives

ĉ�z1,z2� =
1

1 − �z1z2�−1 ���0� − K̂�z1� ��0� K̂�z2�T� . �54�

Defining the discrete counterpart of Eq. �51� as in Eqs. �4�
and �10� in Ref. �8�, i.e.,

K̃�t� ª ��0�−1 c�t,0� , �55�

we get from Eq. �54� by noting that K�0�=−��1� ��0�−1

K̃�0� = 1 + ��0�−1 K�0� ��1�T,

K̃�i� = ��0�−1 K�i� ��1�T for i � 1. �56�

In the one-dimensional case we get K̃�i� for i�1 by multi-
plying K�i� by the autocorrelation of lag 1, �1=
1 /
0 �with

0 being the covariance and 
1 the autocovariance of lag 1 of
the process�. This factor is a consequence of analyzing the

calculation of K̃�i� in the time-discrete formalism; it is
missed by discretizing the corresponding continuous equa-
tion �which was done for Eq. �10� in �8��. Because of Eq.

�56�, the calculation of K̃�i� can only be used to check the
integrity of the numerical implementation and not to test the
applicability of the algorithm.

Example �G�: first-order moving average process �MA�1�
process�. This process is defined by

x�t� = ��t� + a��t − 1� with a � R . �57�

The kernel is easily calculated as �using Eq. �28��

K�i� = �i+1, �58�

with the definition

� ª −
a

1 + a2 . �59�

It should be noted that the kernel of this process can be
distinguished from the kernel of a pseudoperiodic AR�2� pro-
cess �38� only by K�0� and a scaling factor. Using Eq. �54�
we get for the correlations of the noise terms

c�i, j� = �1 + a2�	�ij −
�i+j − �i−j−2

1 − �−2 

→ �1 + a2�	�ij −

�i−j

1 − �2
 �60�

for i , j→� with i− j=const. The elements of the time series
itself are independent for time lags larger than 1. The longer
exponentially decaying correlations of the noise terms are
therefore compensated by the equally decaying kernel which
is contrary to the behavior of the AR�1� process. The pseudo-
periodic AR�2� process shows arbitrary intermediate behav-
ior between these two. Therefore, it is hard to deduce the

complexity of the process from the calculated kernel.
In general, the correlations of the noise terms decay simi-

larly to the kernel �Eq. �54��, which makes it difficult to
determine properties of the time series from the kernel.

V. MODELS WITH A FINITE KERNEL

In practical calculations one will always truncate the ker-
nel to finitely many elements. Therefore, we want to identify
the models corresponding to finite kernels. We will restrict
this discussion to one-dimensional time series to keep the
formalism simple, but the generalization is straightforward.
Since it is general practice to consider time-delayed embed-
dings �2�, we will look at such a d-dimensional embedding:

X�t� ª�
x�t + d − 1�
x�t + d − 2�

]

x�t�
� . �61�

The covariance matrices ��i� can be expressed in terms of
the autocovariance function 
i of the one-dimensional pro-
cess:

���i��pq = 
i−p+q. �62�

The Yule-Walker estimates wd�1� , . . . ,wd�d� of order d ��1�,
Chap. 3.2.2� are the parameters of an AR�d� model such that
the power of the residuals is minimal. They can be deter-
mined by solving

��0��
wd�1�
wd�2�
]

wd�d�
� =�


1


2

]


d

� . �63�

The gapped function gd��� ��14�, Chap. 9.4.2� is defined as
the covariance between the residuals and the time series:

gd��� =�x�k − ��	x�k� − �
i=1

d

wd�i�x�k − i�
�
k

= 
� − �
i=1

d

wd�i�
�−i. �64�

Since the wd�i� are determined by Eq. �63�, we have gd�i�
=0 for 1� i�d, which explains the name “gapped function.”
Its value at the origin can be identified with the power of the
residuals �d

2=gd�0�. As this function is in general not sym-
metric, we can define two unilateral z transforms

ĝd
−�z� = �

i=0

�

gd�− i�z−i �65�

and

ĝd
+�z� = �

i=0

�

gd�d + 1 + i�z−i. �66�

With the notation N for the d�d matrix with 1 in the lower
secondary diagonal and 0 elsewhere and e1 for the first
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d-dimensional unit vector, the kernel is given by �which can
be checked by inserting it into Eq. �28��

K̂�z� = − N − e1�
− wd−1�1�

]

− wd−1�d − 1�
0

�
T

−
ĝd−1

+ �z�
ĝd−1

− �z�
e1�

− wd−1�d − 1�
]

− wd−1�1�
1

�
T

. �67�

By the Levinson-Durbin recursion ��14�, Chap. 9.5�, we
know that the constant term of ĝd−1

+ �z� / ĝd−1
− �z� is wd�d� and

K�0� = − N − e1�wd�1�
]

wd�d�
�

T

. �68�

If we want the kernel to vanish after p elements �i.e., K�i�
=0 for i p�, we have p+d parameters to specify the model.

The noise is concentrated in the first entry �which is, of
course, due to the fact that the other components follow de-
terministicly from the previous time step�:

F̂�z� = f̂�z��
1

0

]

0
� . �69�

Using Eq. �54�, the correlation structure of the f�i� turns out
to be

ĉ�z1,z2� =
�d−1

2

1 − �z1z2�−1	1 −
ĝd−1

+ �z1�
ĝd−1

− �z1�
ĝd−1

+ �z2�
ĝd−1

− �z2�

 . �70�

For i , j p the correlation �f�i�f�j�� depends only on the dif-
ference i− j; 
i−j = �f�i�f�j�� can be determined from the au-
tocorrelation generating function 
̂�z� which follows from
Eq. �70�:


̂�z� = �
i=−�

�


iz
−i = �d−1

2 	1 −
ĝd−1

+ �z�ĝd−1
+ �1/z�

ĝd−1
− �z�ĝd−1

− �1/z�

 . �71�

Therefore, 
k=0 for k p. Since we are dealing with a linear
model and use only the first and second moments �i.e., the
mean, the variance, and the correlations� for the calculation
of the kernel, the calculations will be indistinguishable for
any distribution which has the same first two moments.
Therefore, we will assume for the moment that the f�i� fol-
low a Gaussian distribution with a covariance structure given
by Eq. �71�. Then Eq. �71� tells us that we can regard the f�i�
for i p as a MA�p� process. Putting this together with Eq.
�67�, we see that there are constants ai, independent of t,
such that for t p

x�t + d� = �
i=−p

d−1

aix�t + i� + f�t� . �72�

This corresponds to an ARMA�p+d , p� model where we are
able to choose the p+d coefficients of the autoregressive
part, but the p coefficients of the moving average part are
fixed by this. Describing it more intuitively, one can say that
the finite kernel corresponds to a set of finite AR coefficients,
while the same kernel imposes through Eq. �54� correlations
on the noise terms for a finite lag which is equivalent to a
MA model. Since the same kernel appears in the AR and MA
parts, their coefficients are not independent. Therefore, con-
sidering models with a finite kernel is equivalent to consid-
ering a true subclass of the ARMA models.

As mentioned above, this analysis is not restricted to the
case of Gaussian-distributed observables. Non-Gaussian be-
havior can be observed by checking the distributions of ei-
ther the residuals in case of considering it from the ARMA
model point of view or the distributions of the f�t� in case of
the Mori-Zwanzig point of view �which corresponds to the
residuals of the model, when only the AR part is taken into
account�. Since the residuals of the ARMA model are already
adjusted for the MA part, the residuals are “whiter” than the
f�t�’s. In the context of data generation, allowing the f�t�’s to
be non-Gaussian would correspond to driving the ARMA
model with non-Gaussian noise.

Example �H�: the AR�2� model embedded in two dimen-
sions. The model is given by

x�t� = �1x�t − 1� + �2x�t − 2� + ��t� . �73�

The first kernel element is

K�0� = 	− �1 − �2

− 1 0

 , �74�

while the other kernel elements vanish. Figure 3 shows the
kernel elements K���i� for a two-dimensional embedded
AR�2� process: 106 points were generated with �1=−1.5 and
�2=−0.75. The kernel was computed using the algorithm
given in �8�. It can be seen that K���i�=0 for i�1 and K�0�
coincides with Eq. �74�.

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30

K
(i

)

i

K11(i)
K12(i)
K21(i)
K22(i)

FIG. 3. Kernel K���i� for a two-dimensional embedded AR�2�
process with �1=−1.5 and �2=−0.75. The numerical result for each
kernel element is plotted with points. The analytical solution, Eq.
�74�, is drawn with dotted lines for better visibility.
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VI. CONCLUSIONS

In this paper we discussed the use of the memory kernel
of the Mori-Zwanzig formalism for data analysis. Despite its
undisputed success in approximating the kernel in complex
situations and deriving model parameters from it, we have
shown with an example that the properties of the system are
not directly reflected in the kernel. Furthermore, in data
analysis one normally does not know that the time series has
a linear relation to the “natural” variables of the underlying
process. Being a linear analysis technique the Mori-Zwanzig
approach is of course sensitive to nonlinear changes �a prop-
erty it shares with a lot of other data analysis techniques�.
But we examplified with the harmonic oscillator that these
transformations can lead to an oscillatory memory kernel
with a frequency which is hard to relate to the frequency of
the underlying process while in general nonlinear transfor-
mations induce changes in the autocorrelation function
which have a defined relation to the base frequency �e.g.,
change in the harmonics, frequency doubling�. Since the
memory kernel is derived from the autocorrelation function,
it does not contain more information, but instead of enhanc-
ing the information, it seems to veil them. In addition, if one
wants to interpret the kernel in terms of memory, it is there-
fore better to think of the kernel not as the memory of the
system, but of a memory of the observable depending on the
given representation.

We focused then on a discrete Mori-Zwanzig formalism
introduced in �8� and provided a rigorous formalism for the
calculation of the kernel. We exemplified that the time dis-
cretization of the data can completely change the kernel such
that the most prominent features are driven by the sampling
time. A second example with a stochastically driven, dissipa-

tive, oscillatory system showed the correct damping constant
in zeroth order in the kernel, but the oscillatory property was
not directly detectable and the influence of its frequncy on
the kernel was highly sensitive to the sampling time—both
these quantities are directly accessible in the autocorrelation
function. In addition we related the discrete Mori-Zwanzig
formalism to standard models in linear time series analysis:
namely, the ARMA models. We have calculated the kernels
for some simple model processes of this type and have seen
that it is hard to detect their features directly from the kernel
while the connection is clear for the ARMA models: Why
does a direct fit of AR coefficients for an AR�2� model yield
the correct coefficients—i.e., a kernel which vanishes for j
�2—whereas the same data produce a slowly decaying
model when the kernel is determined in accordance with the
Mori-Zwanzig approach? The resulting models are both lin-
ear superpositions of past variables. The answer is that the
Mori-Zwanzig approach enforces the residual forces to have
an autocorrelation function which is identical to the kernel
�apart from rescaling�, whereas the residuals in the AR�2�
model are uncorrelated. Therefore, the Mori-Zwanzig pro-
cess is not only more complicated because of the long
memory, but also because of a correlated noise driving it. In
particular, modeling of the process by forward-in-time itera-
tion of the model is not straightforward �as opposed to the
AR�2� model�, since one has to generate a correlated noise
process. Therefore, the Mori-Zwanzig approach is not useful
for data generation.

In addition we showed that the Mori-Zwanzig models
with finite kernel form a true subclass of the ARMA models.
In combination with the problems related to the interpreta-
tion of the kernel, this gives rise to severe doubts about the
suitability of the Mori-Zwanzig approach for data analysis.
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